Student understanding of emergent aspects of radioactivity

Abstract views: 966 / PDF downloads: 736




emergence, half-life, radioactivity, student understanding


In this paper, we report on a pilot interview and subsequent survey study investigating student understanding of radioactivity, particularly half-life. Our findings are consistent with other studies in physics education research, for example, that some students think that an individual atom decays over a prolonged period of time, with half of it being gone at the half-life. We see this naïve idea as a failure to recognize the emergent nature of the decay (that is, a large collection of atoms has different properties than an individual atom does).  Research of naïve ideas in radioactivity generally treats the ideas as being stable misconceptions.  In this paper, however, we present evidence that student reasoning can fluidly shift when thinking about radioactivity, depending on the context.


Download data is not yet available.


Alsop, S. (2001). Living with and learning about radioactivity: A comparative conceptual study. International Journal of Science Education, 23(3), 263–281.

Boyes, E., & Stanisstreet, M. (1994). Children’s Ideas about Radioactivity and Radiation: sources, mode of travel, uses and dangers. Research in Science & Technological Education, 12(2), 145–160.

Brown, D. E., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: abstract transfer versus explanatory model construction. Instructional Science, 18(4), 237–261.

Buechter, A., Hussmann, S., Leuders, T., & Prediger, S. (2005). Den Zufall im Griff?–Stochastische Vorstellungen fördern. Praxis Der Mathematik in Der Schule, 47(4), 1–7.

Carey, S. (1986). Cognitive science and science education. American Psychologist, 41(10), 1123. Retrieved from

Carey, S. (2009). The origin of concepts. Oxford, UK: Oxford University Press.

Champagne, A. B., Klopfer, L. E., & Anderson, J. H. (1980). Factors influencing the learning of classical mechanics. American Journal of Physics, 48(12), 1074–1079.

Chi, M. T. H. (2013). Two Kinds and Four Sub-Types of Misconceived Knowledge, Ways to Change it, and the Learning Outcomes. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (2nd ed., pp. 61–82). New York, New York: Routledge.

Creswell, J. W. (2014). A concise introduction to mixed methods research. Thousand Oaks, CA: Sage.

Cros, D., Chastrette, M., & Fayol, M. (1988). Conceptions of second year university students of some fundamental notions in chemistry. International Journal of Science Education, 10(3), 331–336.

de Posada, J. M., & Ruiz, T. P. (1990). Exploraciones gráficas de ideas extraescolares de los alumnos sobre radiactividad. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 8(2), 127–132. Retrieved from

DeKay, N., & Maidl, R. (2012). Identifying & resolving problematic student thinking about ionizing radiation. Proceedings of the 2012 National Conference on Undergraduate Research. Ogden, UT.

DiSessa, A. A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10(2–3), 105–225.

DiSessa, A. A. (2009). A Bird’s-Eye View of the "Pieces" vs. "Coherence" Controversy (From the "Pieces" Side of the Fence). In S. Vosniadou (Ed.), International handbook of research on conceptual change (p. 35). Retrieved from,+in+International+Handbook+of+Research+on+Conceptual+Change,+edited+by+S.+Vosniadou+(Routledge,+New+York,+2008&ots=qAW9Qp7Xqo&sig=ek10is6IrNONz8GE7XcL52IgTyU

DiSessa, A. A. (2017). Conceptual change in a microcosm: Comparative analysis of a learning event. Human Development, 60(1), 1–37.

Eijkelhof, H. M. C. (1990). Radiation and risk in physics education (CD[beta] Press). Retrieved from

Eijkelhof, H. M. C., Klaassen, C. W. J. M., Lijnse, P. L., & Scholte, R. L. J. (1990). Perceived incidence and importance of lay-ideas on ionizing radiation: Results of a delphi-study among radiation-experts. Science Education, 74(2), 183–195.

Ericsson, K. A., & Simon, H. A. (1993). Protocol Analysis: Verbal Reports as Data. Cambridge, MA: MIT Press.

Fukushima child evacuees face menace of school bullies. (2017). Retrieved June 21, 2018, from The Asahi Shimbun website:

Fürnstahl, H., Janisch, S., & Wolfbauer, M. (2016). Physik Heute 4. Klasse. Retrieved from

Gougis, R. D., Stomberg, J. F., O’Hare, A. T., O’Reilly, C. M., Bader, N. E., Meixner, T., & Carey, C. C. (2017). Post-secondary Science Students’ Explanations of Randomness and Variation and Implications for Science Learning. International Journal of Science and Mathematics Education, 15(6), 1039–1056.

Gupta, A., Hammer, D., & Redish, E. F. (2010). The Case for Dynamic Models of Learners’ Ontologies in Physics. Journal of the Learning Sciences, 19(3), 285–321.

Hafele, A. (2012). Exploring learning difficulties associated with understanding ionizing by radiation. Proceedings of the 2012 National Conference on Undergraduate Research. Retrieved from

Hammer, D. (1994). Epistemological Beliefs in Introductory Physics. Cognition and Instruction, 12(2), 151–183.

Hammer, D. (1996a). Misconceptions or P-Prims: How May Alternative Perspectives of Cognitive Structure Influence Instructional Perceptions and Intentions. Journal of the Learning Sciences, 5(2), 97–127.

Hammer, D. (1996b). More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 64(10), 1316–1325.

Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(S1), S52–S59.

Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2006). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (Vol. 1, pp. 89–121). Retrieved from

Henriksen, E. K., & Jorde, D. (2001). High school students’ understanding of radiation and the environment: Can museums play a role? Science Education, 85(2), 189–206.<189::AID-SCE60>3.0.CO;2-S

Hull, M. M., Jansky, A., & Hopf, M. (2020). Probability-related naïve ideas across physics topics. Studies in Science Education, 1–39.

Jansky, A. (2019). Die Rolle von Schülervorstellungen zu Wahrscheinlichkeit und Zufall im naturwissenschaftlichen Kontext. University of Vienna.

Johnson, A. (2017). Personal e-mail.

Johnson, A., & Hafele, A. (2010). Exploring Student Understanding Of Atoms And Radiation With The Atom Builder Simulator. AIP Conference Proceedings, 177–180.

Johnson, A., & Maidl, R. (2014). Students Coming to Understand Ionizing Radiation-A Radiation Literacy Challenge.

Kaczmarek, R., Bednarek, D. R., & Wong, R. (1987). Misconceptions of medical students about radiological physics. Health Physics, 52(1), 106–107. Retrieved from

Kapon, S., & DiSessa, A. A. (2010). Instructional explanations as an interface—the role of explanatory primitives. AIP Conference Proceedings, 189–192.

Klaassen, C. W. J. M., Eijkelhof, H. M. C., & Lijnse, P. L. (1990). Considering an alternative approach to teaching radioactivity. In Relating macroscopic phenomena to microscopic particles: A central problem in secondary science education (pp. 304–316). Retrieved from

Krajšek, S. S., & Vilhar, B. (2010). Active teaching of diffusion through history of science, computer animation and role playing. Journal of Biological Education, 44(3), 116–122.

Levy, S. T., & Wilensky, U. (2008). Inventing a “Mid Level” to Make Ends Meet: Reasoning between the Levels of Complexity. COGNITION AND INSTRUCTION, 26(1), 1–47.

Lijnse, P. L., Eijkelhof, H. M. C., Klaassen, C. W. J. M., & Scholte, R. L. J. (1990). Pupils’ and mass‐media ideas about radioactivity. International Journal of Science Education, 12(1), 67–78.

Linder, C. J., & Erickson, G. L. (1989). A study of tertiary physics students’ conceptualizations of sound. International Journal of Science Education, 11(5), 491–501.

Maurines, L. (1992). Spontaneous reasoning on the propagation of visible mechanical signals. International Journal of Science Education, 14(3), 279–293.

Mayring, P. (2014). Qualitative content analysis: theoretical foundation, basic procedures and software solution. Klagenfurt.

Millar, R. (1994). School students’ understanding of key ideas about radioactivity and ionizing radiation. Public Understanding of Science, 3(1), 53–70.

Millar, R., & Gill, J. S. (1996). School students’ understanding of processes involving radioactive substances and ionizing radiation. Physics Education, 31(1), 27–33.

Millar, R., Klaassen, K., & Eijkelhof, H. (1990). Teaching about radioactivity and ionising radiation: an alternative approach. Physics Education, 25(6), 310.

Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. Research in Physics Learning: Theoretical Issues and Empirical Studies, Proc. of an Internatnl Workshop, 110–128. Retrieved from

Mubeen, S. M., Abbas, Q., & Nisar, N. (2008). Knowledge about ionising and non-ionising radiation among medical students. J Ayub Med Coll Abbottabad, 20(1), 118–121. Retrieved from

Neumann, S. (2014). Three Misconceptions About Radiation — And What We Teachers Can Do to Confront Them. The Physics Teacher, 52(6), 357–359.

Neumann, S., & Hopf, M. (2012). Students’ Conceptions About ‘Radiation’: Results from an Explorative Interview Study of 9th Grade Students. Journal of Science Education and Technology, 21(6), 826–834.

Neumann, S., & Hopf, M. (2013). Students’ Ideas About Nuclear Radiation–Before and After Fukushima. Eurasia Journal of Mathematics, Science & Technology Education, 9(4), 393–404. Retrieved from Ideas About.pdf

Prather, E. E. (2005). Students’ Beliefs About the Role of Atoms in Radioactive Decay and Half-life. Journal of Geoscience Education, 53(4), 345–354.

Prather, E. E., & Harrington, R. R. (2001). Student understanding of ionizing radiation and radioactivity. Journal of College Science Teaching, 31(2), 89. Retrieved from

Redish, E. F. (2014). Oersted Lecture 2013: How should we think about how our students think? American Journal of Physics, 82, 537.

Rego, F., & Peralta, L. (2006). Portuguese students’ knowledge of radiation physics. Physics Education, 41(3), 259–262.

Riesch, W., & Westphal, W. (1975). Modellhafte Schülervorstellungen zur Ausbreitung radioaktiver Strahlung. Der Physikunterricht, 9, 75–85. Retrieved fromülervorstellungen+zur+Ausbreitung+radioaktiver+Strahlung+&btnG=#d=gs_cit&p=&

RIS. Gesamte Rechtsvorschrift für Lehrpläne. (2020).

Sesen, B. A., & Elif, I. N. C. E. (2010). Internet as a source of misconception:" radiation and radioactivity". TOJET: The Turkish Online Journal of Educational Technology, 9(4). Retrieved from

Shaughnessy, J. M., & Ciancetta, M. (2002). Students’ understanding of variability in a probability environment. Proceedings of the Sixth International Conference on Teaching Statistics: Developing a Statistically Literate Society2. Retrieved from

Slovic, P. (1996). Perception of risk from radiation. Radiation Protection Dosimetry, 68(3–4), 165–180. Retrieved from

Smith, J. P. I., DiSessa, A. A., & Roschelle, J. (1994). Misconceptions Reconceived: A Constructivist Analysis of Knowledge in Transition. The Journal of the Learning Sciences, Vol. 3, pp. 115–163.

Stavrou, D., & Duit, R. (2014). Teaching and Learning the Interplay Between Chance and Determinism in Nonlinear Systems. International Journal of Science Education, 36(3), 506–530.

Stavrou, D., Komorek, M., & Duit, R. (2003). Schülervorstellungen über das Wechselspiel von Determinismus und Zufall. In A. Pitton (Ed.), Außerschulisches Lernen in Physik und Chemie Band 23 (Vol. 23, pp. 299–301). Münster: LIT Verlag.

Strike, K. A., & Posner, G. J. (1982). Conceptual change and science teaching. European Journal of Science Education, 4(3), 231–240.

Tekin, B. B., & Nakiboglu, C. (2006). Identifying Students’ Misconceptions about Nuclear Chemistry. A Study of Turkish High School Students. Journal of Chemical Education, 83(11), 1712.

Vosniadou, S., & Skopeliti, I. (2014). Conceptual Change from the Framework Theory Side of the Fence. Sci & Educ, 23, 1427–1445.

Who Are The Hibakusha? | Hibakusha Stories. (n.d.). Retrieved February 9, 2018, from

Wilensky, U. (1999). GasLab–an Extensible Modeling Toolkit for Exploring Micro- and Macro- Views of Gases. In N. Roberts, W. Feurzeig, & B. Hunter (Eds.), Computer Modeling and Simulation in Science Education. Berlin: Springer Verlag.

Wilensky, U., & Reisman, K. (1999a). ConnectedScience:Learning Biology through Constructing and Testing Computational Theories-an Embodied Modeling Approach. InterJournal of Complex Systems, 234, 1–12. Retrieved from

Wilensky, U., & Reisman, K. (1999b). ConnectedScience:Learning Biology through Constructing and Testing Computational Theories-an Embodied Modeling Approach. InterJournal of Complex Systems, 234, 1–12.

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19. Retrieved from

Wittmann, M. C., Steinberg, R. N., & Redish, E. F. (1999). Making sense of how students make sense of mechanical waves. The Physics Teacher, 37(1), 15–21.




How to Cite

Hull, M. M., & Hopf, M. (2020). Student understanding of emergent aspects of radioactivity. International Journal of Physics and Chemistry Education, 12(2), 19–33.