AI in chemistry and chemical education

AI in chemistry


Abstract views: 39 / PDF downloads: 46

Authors

DOI:

https://doi.org/10.51724/ijpce.v17i1.403

Keywords:

Artificial Intelligence, Chemical Education, AI

Abstract

Artificial Intelligence (AI) is reshaping chemistry education by offering new tools for teaching, learning, and research. We explore how AI can both support chemistry learning and serve as a subject of instruction, while also addressing the ethical, technical, and educational challenges involved. It highlights the need to systematically integrate AI-related competencies into teacher education, guided by frameworks like DiKoLAN AI. A reflective, responsible approach is essential to ensure AI enhances, rather than undermines, scientific understanding and equity in the classroom.

Downloads

Download data is not yet available.

Author Biographies

Johannes Huwer, University of Konstanz, Konstanz, Germany

University of Konstanz, Konstanz, Germany & University of Education Thurgau, Kreuzlingen, Switzerland

Nikolai Maurer, University of Konstanz, Konstanz, Germany

University of Konstanz, Konstanz, Germany & University of Education Thurgau, Kreuzlingen, Switzerland

References

Battista, A. D., Grayling, S., Játiva, X., Leopold, T., Li, R., Sharma, S., & Zahidi, S. (2025). Future of Jobs Report 2025, Cologny/Geneva.

Berber, S., Brückner, M., Maurer, N., & Huwer, J. (2025). Artificial Intelligence in Chemistry Research─Implications for Teaching and Learning. Journal of Chemical Education. https://doi.org/10.1021/acs.jchemed.4c01033

Blonder, R., & Feldman-Maggor, Y. (2024). AI for chemistry teaching: responsible AI and ethical considerations. Chemistry Teacher International, 6(4), 385-395. https://doi.org/10.1515/cti-2024-0014

Craglia, M., De Nigris, S., Nepelski, D., & Hradec, J. (2021). AI watch, AI uptake in smart mobility (C. European Commission: Joint Research, Ed.). Publications Office. https://doi.org/doi/10.2760/879190

Döbeli Honegger, B. (2016). Mehr als 0 und 1. Schule in einer digitalisierten Welt. 1. Auflage. hep, Der Bildungsverlag.

Dunn, A. G., Shih, I., Ayre, J., & Spallek, H. (2023). What generative AI means for trust in health communications. Journal of Communication in Healthcare, 16(4), 385-388. https://doi.org/10.1080/17538068.2023.2277489

Gomollón-Bel, F. (2023). IUPAC’s 2023 Top Ten Emerging Technologies in Chemistry. Chemistry International, 45(4), 14-22. https://doi.org/doi:10.1515/ci-2023-0403

Huwer, J., Becker-Genschow, S., Thyssen, C., Thoms, L.-J., von Kotzebue, L., Finger, A., Kremser, E., Meier, M., & Bruckermann, T. (2024). Kompetenzen für den Unterricht mit und über Künstliche Intelligenz. Waxmann. https://doi.org/10.31244/9783830999317

Ishida, S., Terayama, K., Kojima, R., Takasu, K., & Okuno, Y. (2022). AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge. Journal of Chemical Information and Modeling, 62(6), 1357-1367. https://doi.org/10.1021/acs.jcim.1c01074

Jindal, J. A., Lungren, M. P., & Shah, N. H. (2024). Ensuring useful adoption of generative artificial intelligence in healthcare. Journal of the American Medical Informatics Association, 31(6), 1441-1444. https://doi.org/10.1093/jamia/ocae043

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J.,…Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2

Kaufenberg-Lashua, M. M., West, J. K., Kelly, J. J., & Stepanova, V. A. (2024). What Does AI Think a Chemist Looks Like? An Analysis of Diversity in Generative AI. Journal of Chemical Education, 101(11), 4704-4713. https://doi.org/10.1021/acs.jchemed.4c00249

Koehler, M. J., Mishra, P., & Cain, W. (2013). What is technological pedagogical content knowledge (TPACK)? Journal of Education, 193(3), 13-19.

Liu, X.-P., Jin, X., Seyed Ahmadian, S., Yang, X., Tian, S.-F., Cai, Y.-X., Chawla, K., Snijders, A. M., Xia, Y., van Diest, P. J., Weiss, W. A., Mao, J.-H., Li, Z.-Q., Vogel, H., & Chang, H. (2023). Clinical significance and molecular annotation of cellular morphometric subtypes in lower-grade gliomas discovered by machine learning. Neuro-Oncology, 25(1), 68-81. https://doi.org/10.1093/neuonc/noac154

Lourenço, M. P., Herrera, L. B., Hostaš, J., Calaminici, P., Köster, A. M., Tchagang, A., & Salahub, D. R. (2023). QMLMaterial─A Quantum Machine Learning Software for Material Design and Discovery. Journal of Chemical Theory and Computation, 19(17), 5999-6010. https://doi.org/10.1021/acs.jctc.3c00566

Maier, U. & Klotz, C. (2022). Personalized feedback in digital learning environments: Classification framework and literature review. Computers and Education: Artificial Intelligence, 3, 100080. https://doi.org/10.1016/j.caeai.2022.100080

Mishra, P., Warr, M., & Islam, R. (2023). TPACK in the age of ChatGPT and Generative AI. Journal of Digital Learning in Teacher Education, 39(4), 235-251. https://doi.org/10.1080/21532974.2023.2247480

Mousavinasab, E., Zarifsanaiey, N., R. Niakan Kalhori, S., Rakhshan, M., Keikha, L., & Ghazi Saeedi, M. (2018). Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods. Interactive Learning Environments, 29(1), 142–163. https://doi.org/10.1080/10494820.2018.1558257

OECD (2023). Generative artificial intelligence in finance. OECD Artificial Intelligence Papers, No. 9. https://doi.org/10.1787/ac7149cc-en

Sarsa, S., Denny, P., Hellas, A., & Leinonen, J. (2022). Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models. Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 1, Lugano and Virtual Event, Switzerland. https://doi.org/10.1145/3501385.3543957

Talanquer, V. (2023). Interview with the Chatbot: How Does It Reason? Journal of Chemical Education, 100(8), 2821-2824. https://doi.org/10.1021/acs.jchemed.3c00472

The Royal Swedish Academy of Sciences. (2024, 09.10.2024). The Nobel Prize in Chemistry 2024. https://www.nobelprize.org/prizes/chemistry/2024/press-release/

Thyssen, C., Huwer, J., Irion, T., & Schaal, S. (2023). From TPACK to DPACK: The Digitality-Related Pedagogical and Content Knowledge-Model in STEM-Education. education sciences, 13(8), 769. https://doi.org/doi:10.3390/educsci13080769

Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What Should Every Child Know about AI? Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 9795-9799. https://doi.org/10.1609/aaai.v33i01.33019795

UNESCO (2022). K-12 AI curricula: a mapping of government-endorsed AI curricula. Paris: United Nations Educational, Scientific and Cultural Organization. Retrieved from https://unesdoc.unesco.org/notice?id=p::usmarcdef_0000380602

UNESCO (2024). AI competency framework for teachers. Paris: United Nations Educational, Scientific and Cultural Organization. https://doi.org/10.54675/ZJTE2084

von Kotzebue, L., Meier, M., Finger, A., Kremser, E., Huwer, J., Thoms, L.-J., Becker, S., Bruckermann, T., & Thyssen, C. (2021). The Framework DiKoLAN (Digital Competencies for Teaching in Science Education) as Basis for the Self-Assessment Tool DiKoLAN-Grid. education sciences, 11(12), 775. https://doi.org/doi:10.3390/educsci11120775

Downloads

Published

08/08/2025

How to Cite

Huwer, J., Maurer, N., Mundt, P., & Belova, N. (2025). AI in chemistry and chemical education: AI in chemistry. International Journal of Physics and Chemistry Education, 17(1), 1–4. https://doi.org/10.51724/ijpce.v17i1.403