AI in chemistry and chemical education
AI in chemistry


DOI:
https://doi.org/10.51724/ijpce.v17i1.403Keywords:
Artificial Intelligence, Chemical Education, AIAbstract
Artificial Intelligence (AI) is reshaping chemistry education by offering new tools for teaching, learning, and research. We explore how AI can both support chemistry learning and serve as a subject of instruction, while also addressing the ethical, technical, and educational challenges involved. It highlights the need to systematically integrate AI-related competencies into teacher education, guided by frameworks like DiKoLAN AI. A reflective, responsible approach is essential to ensure AI enhances, rather than undermines, scientific understanding and equity in the classroom.
Downloads
References
Battista, A. D., Grayling, S., Játiva, X., Leopold, T., Li, R., Sharma, S., & Zahidi, S. (2025). Future of Jobs Report 2025, Cologny/Geneva.
Berber, S., Brückner, M., Maurer, N., & Huwer, J. (2025). Artificial Intelligence in Chemistry Research─Implications for Teaching and Learning. Journal of Chemical Education. https://doi.org/10.1021/acs.jchemed.4c01033
Blonder, R., & Feldman-Maggor, Y. (2024). AI for chemistry teaching: responsible AI and ethical considerations. Chemistry Teacher International, 6(4), 385-395. https://doi.org/10.1515/cti-2024-0014
Craglia, M., De Nigris, S., Nepelski, D., & Hradec, J. (2021). AI watch, AI uptake in smart mobility (C. European Commission: Joint Research, Ed.). Publications Office. https://doi.org/doi/10.2760/879190
Döbeli Honegger, B. (2016). Mehr als 0 und 1. Schule in einer digitalisierten Welt. 1. Auflage. hep, Der Bildungsverlag.
Dunn, A. G., Shih, I., Ayre, J., & Spallek, H. (2023). What generative AI means for trust in health communications. Journal of Communication in Healthcare, 16(4), 385-388. https://doi.org/10.1080/17538068.2023.2277489
Gomollón-Bel, F. (2023). IUPAC’s 2023 Top Ten Emerging Technologies in Chemistry. Chemistry International, 45(4), 14-22. https://doi.org/doi:10.1515/ci-2023-0403
Huwer, J., Becker-Genschow, S., Thyssen, C., Thoms, L.-J., von Kotzebue, L., Finger, A., Kremser, E., Meier, M., & Bruckermann, T. (2024). Kompetenzen für den Unterricht mit und über Künstliche Intelligenz. Waxmann. https://doi.org/10.31244/9783830999317
Ishida, S., Terayama, K., Kojima, R., Takasu, K., & Okuno, Y. (2022). AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge. Journal of Chemical Information and Modeling, 62(6), 1357-1367. https://doi.org/10.1021/acs.jcim.1c01074
Jindal, J. A., Lungren, M. P., & Shah, N. H. (2024). Ensuring useful adoption of generative artificial intelligence in healthcare. Journal of the American Medical Informatics Association, 31(6), 1441-1444. https://doi.org/10.1093/jamia/ocae043
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J.,…Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
Kaufenberg-Lashua, M. M., West, J. K., Kelly, J. J., & Stepanova, V. A. (2024). What Does AI Think a Chemist Looks Like? An Analysis of Diversity in Generative AI. Journal of Chemical Education, 101(11), 4704-4713. https://doi.org/10.1021/acs.jchemed.4c00249
Koehler, M. J., Mishra, P., & Cain, W. (2013). What is technological pedagogical content knowledge (TPACK)? Journal of Education, 193(3), 13-19.
Liu, X.-P., Jin, X., Seyed Ahmadian, S., Yang, X., Tian, S.-F., Cai, Y.-X., Chawla, K., Snijders, A. M., Xia, Y., van Diest, P. J., Weiss, W. A., Mao, J.-H., Li, Z.-Q., Vogel, H., & Chang, H. (2023). Clinical significance and molecular annotation of cellular morphometric subtypes in lower-grade gliomas discovered by machine learning. Neuro-Oncology, 25(1), 68-81. https://doi.org/10.1093/neuonc/noac154
Lourenço, M. P., Herrera, L. B., Hostaš, J., Calaminici, P., Köster, A. M., Tchagang, A., & Salahub, D. R. (2023). QMLMaterial─A Quantum Machine Learning Software for Material Design and Discovery. Journal of Chemical Theory and Computation, 19(17), 5999-6010. https://doi.org/10.1021/acs.jctc.3c00566
Maier, U. & Klotz, C. (2022). Personalized feedback in digital learning environments: Classification framework and literature review. Computers and Education: Artificial Intelligence, 3, 100080. https://doi.org/10.1016/j.caeai.2022.100080
Mishra, P., Warr, M., & Islam, R. (2023). TPACK in the age of ChatGPT and Generative AI. Journal of Digital Learning in Teacher Education, 39(4), 235-251. https://doi.org/10.1080/21532974.2023.2247480
Mousavinasab, E., Zarifsanaiey, N., R. Niakan Kalhori, S., Rakhshan, M., Keikha, L., & Ghazi Saeedi, M. (2018). Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods. Interactive Learning Environments, 29(1), 142–163. https://doi.org/10.1080/10494820.2018.1558257
OECD (2023). Generative artificial intelligence in finance. OECD Artificial Intelligence Papers, No. 9. https://doi.org/10.1787/ac7149cc-en
Sarsa, S., Denny, P., Hellas, A., & Leinonen, J. (2022). Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models. Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 1, Lugano and Virtual Event, Switzerland. https://doi.org/10.1145/3501385.3543957
Talanquer, V. (2023). Interview with the Chatbot: How Does It Reason? Journal of Chemical Education, 100(8), 2821-2824. https://doi.org/10.1021/acs.jchemed.3c00472
The Royal Swedish Academy of Sciences. (2024, 09.10.2024). The Nobel Prize in Chemistry 2024. https://www.nobelprize.org/prizes/chemistry/2024/press-release/
Thyssen, C., Huwer, J., Irion, T., & Schaal, S. (2023). From TPACK to DPACK: The Digitality-Related Pedagogical and Content Knowledge-Model in STEM-Education. education sciences, 13(8), 769. https://doi.org/doi:10.3390/educsci13080769
Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What Should Every Child Know about AI? Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 9795-9799. https://doi.org/10.1609/aaai.v33i01.33019795
UNESCO (2022). K-12 AI curricula: a mapping of government-endorsed AI curricula. Paris: United Nations Educational, Scientific and Cultural Organization. Retrieved from https://unesdoc.unesco.org/notice?id=p::usmarcdef_0000380602
UNESCO (2024). AI competency framework for teachers. Paris: United Nations Educational, Scientific and Cultural Organization. https://doi.org/10.54675/ZJTE2084
von Kotzebue, L., Meier, M., Finger, A., Kremser, E., Huwer, J., Thoms, L.-J., Becker, S., Bruckermann, T., & Thyssen, C. (2021). The Framework DiKoLAN (Digital Competencies for Teaching in Science Education) as Basis for the Self-Assessment Tool DiKoLAN-Grid. education sciences, 11(12), 775. https://doi.org/doi:10.3390/educsci11120775
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Johannes Huwer, Nikolai Maurer, Pauline Mundt, Nadja Belova

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Authors